page id: 122
(Кэшируется)
| language
Теги:
интерактив
электродинамика
электричество
парабола
практикум
сила_тока
реостаты
напряжение
сопротивление
мощность
амперметр
закон_Ома
модели
(1.3.4.2) Интерактивные модели по физике, виртуальный практикум » Виртуальный практикум по физике » Электромагнитные явления » Постоянный ток » Закон Ома для полной цепи: мощность |
на внешнем участке от силы тока в цепи
Закон Ома для полной цепи и полезная мощность
Один из наиболее распространенных способов использования электрической энергии — это получение тепла.
Тепловая мощность N, получаемая от нагревательного элемента (электроплитки, электрочайника, масляного радиатора, паяльника и т.д.), может быть выражена по закону Джоуля-Ленца через силу тока I и сопротивление R нагревательного элемента:
N = I 2 R
При подключении полезной нагрузки к реальному источнику тока мощность (теплота) всегда выделяется как на внешнем сопротивлении R , так и на внутреннем сопротивлении источника питания r. Источник питания греется и это не всегда хорошо. Мощность, выделяющаяся на внешнем участке электрической цепи называют полезной. Чтобы найти соотношение полезной и «бесполезной» мощностей (это соотношение определяет коэффициент полезного действия) необходимо использовать закон Ома для полной цепи. Подробнее о нем можно прочитать в параграфе о законе Ома для полной цепи
Закон Ома для полной цепи можно рассматривать как следствие II правила Кирхгофа, являющегося в некотором смысле аналогом закона сохранения энергии при протекании заряда в электрических цепях. Суть его заключается в том, что при перемещении заряда по замкнутому контуру работа совершаемая электрическими (электростатическими) силами должна давать 0. (Сила электростатического взаимодействия потенциала или консервативна). Напряжение между двумя точками — это отношение суммарной работы всех сил к перемещенному заряду. При подсчете работы на замкнутом контуре полная работа электрических сил обратится в ноль и останется только работа сторонних сил: А∑ = А∑ СТ. Если поделить это равенство на величину заряда, то мы получим: U∑ = ε∑, — в замкнутом контуре суммарное падение напряжений равно сумме электродвижущих сил. Это и есть второе правило Кирхгофа. Напряжение в цепи с источником тока падает на внешем и внутреннем участках: Uвнеш = IR и Uвнутр = Ir и в сумме дает величину ЭДС. Таким образом, этот закон может быть записан следующим образом:
ε = I·(R + r),
где ε — электродвижущая сила источника тока — величина, характеризующую работу сторонних сил по перемещению зарядов в источнике тока.
Для того, чтобы получить выражение для полезной мощности, сначала выразим внешнее сопротивление:
R= ε/I – r,
И подставим его в закон Джоуля-Ленца:
N(I) = I2·R = –rI2+ εI .
Видно, что зависимость полезной мощности от силы тока представляет собой квадратный трехчлен. (Напомню, что Это выражение получено при помощи закона Ома для полной цепи и Закона Джоуля-Ленца) График этой зависимости — парабола, ветви которой направлены вниз. Максимальная мощность Nmax = ε2/(4r) отдается во внешнюю цепь при силе тока Imax = ε/(2r) (вершина параболы), т.е. при равенстве внешнего и внутреннего сопротивлений. Полезная мощность равна нулю при двух значениях силы тока:
- I 1 = 0 : цепь разомкнута и R → ∞
- I 2 = ε/r : короткое замыкание R = 0
Интерактивная модель «Закон Ома для полной цепи»
В настоящей модели представлена схема по измерению силы тока в цепи при измерении сопротивления реостата согласно закону Ома для полной цепи.
В настоящей схеме можно варьировать:
- Внутреннее сопротивление источника тока;
- ЭДС источника тока;
- Максимальное сопротивление реостата;
- Рабочее сопротивление реостата.
Управление интерактивной моделью
- Изменить масштаб: «CTRL + колесо мыши» или «CTRL + "+"»–«CTRL + "–"»
- Изменить позицию: перетащить при зажатой «CTRL + левая кнопка мыши»
- Стереть все «следы»: «CTRL + F»
Модель разработана при помощи системы динамической математики GeoGebra
Автор: Анухин П.М., преподаватель физики, Аничков лицей
Создано: 28.09.2011
Лицензия: Creative Commons Attribution-Share Alike 3.0
Скачать модель
Авторами моделей, отмеченных знаком © CC-BY-SA, Являются указанные на сайте http://school-physics.spb.ru лица. Интерактивные модели распространяются по лицензии Creative Commons Attribution-Share Alike 3.0
Attribution-ShareAlike (by-sa) — Лицензия «С указанием авторства — Копилефт». Эта лицензия позволяет другим перерабатывать, исправлять и развивать произведение даже в коммерческих целях при условии указания авторства и лицензирования производных работ на аналогичных условиях. Эта лицензия является копилефт-лицензией. Все новые произведения основанные на лицензированном под нею будут иметь аналогичную лицензию, поэтому все производные будет разрешено изменять и использовать в коммерческих целях. При воспроизведении работ, распространяемых по данной лицензии ссылка на сайт http://school-physics.spb.ru обязательна!
Скачать модель
Attribution-ShareAlike (by-sa) — Лицензия «С указанием авторства — Копилефт». Эта лицензия позволяет другим перерабатывать, исправлять и развивать произведение даже в коммерческих целях при условии указания авторства и лицензирования производных работ на аналогичных условиях. Эта лицензия является копилефт-лицензией. Все новые произведения основанные на лицензированном под нею будут иметь аналогичную лицензию, поэтому все производные будет разрешено изменять и использовать в коммерческих целях. При воспроизведении работ, распространяемых по данной лицензии ссылка на сайт http://school-physics.spb.ru обязательна!
Скачать модель
Виртуальная лабораторная работа: «Закон Ома для полной цепи: полезная мощность», формула
Created by admin. Last Modification: Понедельник 04 / Март, 2013 10:37:12 GMT+04:00 by admin.
Sidebar
Меценатам
Если Вы хотите поддержать сайт, заполните небольшую формочку